Квантовая реальность

0

 

Майкл Талбот: Голографическая Вселенная

Существует ли объективная реальность, или Вселенная — фантазм?

Свет узнаёт Свет
В 1982 году произошло замечательное событие. В Парижском университете исследовательская группа под руководством физика Alain Aspect провела эксперимент, который может оказаться одним из самых значительных в 20 веке. Вы не слышали об этом в вечерних новостях. На самом деле, если у вас не в обычае читать научные журналы, скорее всего, вы даже не слышали имя Alain Aspect, хотя некоторые ученые верят, что его открытие способно изменить лицо науки.

Aspect и его группа обнаружили, что в определенных условиях элементарные частицы, например, электроны, способны мгновенно сообщаться друг с другом независимо от расстояния между ними. Hе имеет значения, 10 футов между ними или 10 миллиардов миль. Каким-то образом каждая частица всегда знает, что делает другая.

Проблема этого открытия в том, что оно нарушает постулат Эйнштейна о предельной скорости распространения взаимодействия, равной скорости света. Поскольку путешествие быстрее скорости света равносильно преодолению временного барьера, эта пугающая перспектива заставила некоторых физиков пытаться разъяснить опыты Aspect сложными обходными путями. Hо других это вдохновило предложить даже более радикальные объяснения.

Hапример, физик лондонского университета David Bohm посчитал, что из открытия Aspect следует, что объективной реальности не существует, что, несмотря на ее очевидную плотность, вселенная в своей основе — фантазм, гигантская, роскошно детализированная голограмма.

Чтобы понять, почему Bohm сделал такое поразительное заключение, нужно сказать о голограммах.

Голограмма представляет собой трехмерную фотографию, сделанную с помощью лазера. Чтобы изготовить голограмму, прежде всего фотографируемый предмет должен быть освещен светом лазера. Тогда второй лазерный луч, складываясь с отраженным светом от предмета, дает интерференционную картину, которая может быть зафиксирована на пленке. Готовый снимок выглядит как бессмысленное чередование светлых и темных линий. Hо стоит осветить снимок другим лазерным лучом, как тотчас появляется трехмерное изображение исходного предмета.

Трехмерность — не единственное замечательное свойство, присущее голограмме. Если голограмму с изображением розы разрезать пополам и осветить лазером, каждая половина будет содержать целое изображение той же самой розы точно такого же размера. Если же продолжать разрезать голограмму на более мелкие кусочки, на каждом из них мы вновь обнаружим изображение всего объекта в целом. В отличие от обычной фотографии, каждый участок голограммы содержит информацию о всем предмете, но с пропорционально соответствующим уменьшением четкости.

Принцип голограммы «все в каждой части» позволяет нам принципиально по-новому подойти к вопросу организованности и упорядоченности. На протяжении почти всей своей истории западная наука развивалась с идеей о том, что лучший способ понять физический феномен, будь то лягушка или атом, — это рассечь его и изучить составные части. Голограмма показала нам, что некоторые вещи во вселенной не поддаются исследованию таким образом.

Если мы будем рассекать что-либо, устроенное голографически, мы не получим частей, из которых оно состоит, а получим то же самое, но поменьше точностью.

Такой подход вдохновил Bohm на иную интерпретацию работ Aspect. Bohm был уверен, что элементарные частицы взаимодействуют на любом расстоянии не потому, что они обмениваются некими таинственными сигналами между собой, а потому, что их разделенность иллюзорна. Он пояснял, что на каком-то более глубоком уровне реальности такие частицы являются не отдельными объектами, а фактически расширениями чего-то более фундаментального.

Чтобы это лучше уяснить, Bohm предлагал следующую иллюстрацию.

Представьте себе аквариум с рыбой. Вообразите также, что вы не можете видеть аквариум непосредственно, а можете наблюдать только два телеэкрана, которые передают изображения от камер, расположенных одна спереди, другая сбоку аквариума. Глядя на экраны, вы можете заключить, что рыбы на каждом из экранов — отдельные объекты. Поскольку камеры передают изображения под разными углами, рыбы выглядят по-разному. Hо, продолжая наблюдение, через некоторое время вы обрнаружите, что между двумя рыбами на разных экранах существует взаимосвязь. Когда одна рыба поворачивает, другая также меняет направление движения, немного по-другому, но всегда соответственно первой; когда одну рыбу вы видите анфас, другую непременно в профиль. Если вы не владеете полной картиной ситуации, вы скорее заключите, что рыбы должны как-то моментально общаться друг с другом, чем что это случайное совпадение.

Bohm утверждал, что именно это и происходит с элементарными частицами в эксперименте Aspect. Согласно Bohm, явное сверхсветовое взаимодействие между частицами говорит нам, что существует более глубокий уровень реальности, скрытый от нас, более высокой размерности, чем наша, как в аналогии с аквариумом. И, он добавляет, мы видим частицы раздельными потому, что мы видим лишь часть действительности. Частицы — не отдельные «части», но грани более глубокого единства, которое в конечном итоге так же голографично и невидимо, как упоминавшаяся выше роза. И поскольку все в физической реальности состоит из этих «фантомов», наблюдаемая нами вселенная сама по себе есть проекция, голограмма.

Вдобавок к ее «фантомности», такая вселенная может обладать и другими удивительными свойствами. Если очевидная разделенность частиц — это иллюзия, значит, на более глубоком уровне все предметы в мире могут быть бесконечно взаимосвязаны. Электроны в атомах углерода в нашем мозгу связаны с электронами каждого плывущего лосося, каждого бьющегося сердца, каждой мерцающей звезды. Все взаимопроникает со всем, и хотя человеческой натуре свойственно все разделять, расчленять, раскладывать по полочкам все явления природы, все разделения по необходимости искусственны, и природа в конечном итоге предстает безразрывной паутиной. В голографическом мире даже время и пространство не могут быть взяты за основу. Потому что такая характеристика, как положение, не имеет смысла во вселенной, где ничто на самом деле не отделено друг от друга; время и трехмерное пространство, как изображения рыб на экранах, необходимо будет считать не более чем проекциями. На этом, более глубоком уровне реальность — это нечто вроде суперголограммы, в которой прошлое, настоящее и будущее существуют одновременно. Это значит, что с помощью соответствующего инструментария может появиться возможность проникнуть вглубь этой супер-голограммы и извлечь картины давно забытого прошлого.

Что еще может нести в себе голограмма — еще далеко не известно. Предположим, например, что голограмма — это матрица, дающая начало всему в мире, как минимум, в ней есть все элементарные частицы, которые принимали или будут когда-то принимать любую возможную форму материи и энергии, от снежинок до квазаров, от голубых китов до гамма-лучей. Это как бы вселенский супермаркет, в котором есть все.

Хотя Bohm и признавал, что у нас нет способа узнать, что еще таит в себе голограмма, он брал на себя смелость утверждать, что у нас нет причин, чтобы предположить, что в ней больше ничего нет. Другими словами, возможно, голографический уровень мира — просто одна из ступеней бесконечной эволюции.

Bohm не одинок в своем стремлении исследовать свойства голографического мира. Hезависимо от него, нейрофизиолог из стэндфордского университета Karl Pribram, работающий в области исследования мозга, также склоняется к голографической картине мира.

Pribram пришел к этому заключению, размышляя над загадкой, где и как в мозге хранятся воспоминания. Многочисленные эксперименты на протяжении десятилетий показали, что информация хранится не в каком-то определенном участке мозга, а рассредоточена по всему объему мозга. В ряде решающих экспериментов в 20-х годах исследователь мозга Karl Lashley обнаружил, что независимо от того, какой участок мозга крысы он удалял, он не мог добиться исчезновения условных рефлексов, выработанных у крысы до операции. Единственной проблемой оставалось то, что никто не смог предложить механизм, объясняющий это забавное свойство памяти «все в каждой части».

Позже, в 60-х, Pribram столкнулся с принципом голографии и понял, что он нашел объяснение, которое искали нейрофизиологи. Pribram уверен, что память содержится не в нейронах и не в группах нейронов, а в сериях нервных импульсов, «оплетающих» мозг, подобно тому, как луч лазера «оплетает» кусочек голограммы, содержащий все изображение целиком. Другими словами, Pribram уверен, что мозг есть голограмма.

Теория Pribram также объясняет, как человеческий мозг может хранить так много воспоминаний в таком маленьком объеме. Предполагается, что человеческий мозг способен запомнить порядка 10 миллиардов бит за всю жизнь (что соответствует примерно объему информации, содержащемуся в 5 комплектах Британской энциклопедии).

Было обнаружено, что к свойствам голограмм добавилась еще одна поразительная черта — огромная плотность записи. Просто изменяя угол, под которым лазеры освещают фотопленку, можно записать много различных изображений на той же поверхности. Было показано, что один кубический сантиметр пленки способен хранить до 10 миллиардов бит информации.

Hаша сверъестественная способность быстро отыскивать нужную информацию из громадного объема нашей памяти становится более понятной, если принять, что мозг работает по принципу голограммы. Если друг спросит вас, что пришло вам на ум при слове «зебра», вам не придется механически перебирать весь свой словарный запас, чтобы найти ответ. Ассоциации вроде «полосатая», «лошадь» и «живет в Африке» появляются в вашей голове мгновенно.

Действительно, одно из самых удивительных свойств человеческого мышления — это то, что каждый кусок информации мгновенно и взаимно коррелируется с любым другим — еще одно качество, присущее голограмме. Поскольку любой участок голограммы бесконечно взаимосвязан с любым другим, вполне возможно, что она является высшим природным образцом перекрестно-коррелированных систем.

Местонахождение памяти — не единственная нейрофизиологическая загадка, которая стала более разрешимой в свете голографической модели мозга Pribram. Другая — это каким образом мозг способен переводить такую лавину частот, которые он воспринимает различными органами чувств (частоты света, звуковые частоты и так далее), в наше конкретное представление о мире. Кодирование и декодирование частот — это именно то, с чем голограмма справляется лучше всего. Точно так же, как голограмма служит своего рода линзой, передающим устройством, способным превращать видимо бессмысленную мешанину частот в связное изображение, так и мозг, по мнению Pribram, содержит такую линзу и использует принципы голографии для математической переработки частот от органов чувств во внутренний мир наших восприятий.

продолжение следует…

Choose your Reaction!
Оставить комментарий